

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 63 (2007) 6035-6041

A highly regio- and stereo-selective [3+2] annulation of allylic compounds and 2-substituted 1,1-dicyanoalkenes through a catalytic carbon–phosphorus ylide reaction

Jianqing Feng, Xiyan Lu,* Aidi Kong and Xiuling Han

State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Lu, Shanghai 200032, China

> Received 8 January 2007; revised 27 February 2007; accepted 27 February 2007 Available online 2 March 2007

Abstract—A highly regio- and stereo-selective phosphine-catalyzed [3+2] annulation reaction between allylic compounds and 2-substituted 1,1-dicyanoalkenes through a catalytic phosphorus ylide reaction was developed. This reaction has the total reversed regioselectivity compared to that of the reactions of activated alkenes without the 2-substituents or reactions using the allenoates as the C3 component. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

To make a stoichiometric reaction catalytic has been longstanding goal in modern organic synthesis. Recently, reports on phosphines as nucleophilic catalysts in the reaction of alkynoates or allenoates have grown significantly.^{1,2} The major reason for the success of the phosphine-catalyzed isomerization, α -, γ -addition and [3+2] cycloaddition of alkynoates or allenoates, is ascribed to the presence of an electron-withdrawing group, which facilitates the nucleophilic addition and the important proton-transfer step making the elimination of phosphine possible to complete the catalytic cycles (Scheme 1).

Scheme 1. The importance of electron-withdrawing group for the regeneration of phosphine catalyst.

With this in mind, it was thought that phosphine-catalyzed reactions might be realized via a modified allylic phosphonium ylide B. Thus, simple allylic compounds can be used as the starting materials instead of the complex alkynoates or allenoates (Scheme 2). Recently, the phosphine-catalyzed [3+2] and [3+6] annulation reactions through a phosphorus ylide were reported (Scheme 3).³ These novel approaches involve cycloaddition of electron-deficient olefins with electron-deficient allylic compounds as the three-carbon unit.

Scheme 2. The possibility of using allylic compounds as the starting material.

Scheme 3. The phosphine-catalyzed [3+2] and [3+6] annulation reactions through a phosphonium ylide.

Keywords: Carbon–phosphorus ylide; Phosphine; Allylic compounds; 2-Substituted 1,1-dicyanoalkenes.

^{*} Corresponding author. Tel.: +86 21 54925158; fax: +86 21 64166128; e-mail: xylu@mail.sioc.ac.cn

^{0040–4020/\$ -} see front matter \odot 2007 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2007.02.115

While the [3+2] annulation reactions using tertiary phosphine as catalysts are well developed, as far as we know, only terminal alkenes can be used in the phosphinecatalyzed [3+2] reaction except for the intramolecular annulation reactions¹ and those using enones^{2a} or dually activated olefins such as diethyl fumarate or diethyl maleate as the substrate.¹ Also, a pair of regioisomers was produced in almost every case.¹ Recently, the [3+2] annulation reaction of allenoates and 2-substituted 1,1-dicyanoalkenes was reported showing high reactivity of the olefin and high regioselectivity of the reaction (Scheme 4).⁴ Herein, we wish to report our recent results on the highly regio- and stereoselective [3+2] annulation of modified allylic compounds with 2-substituted 1,1-dicyanoalkenes through a catalytic carbon-phosphorus ylide reaction and the different regioselectivity than that of the [3+2] annulation reaction from allenoates and 2-substituted 1,1-dicyanoalkenes.⁴

Scheme 4. Phosphine-catalyzed [3+2] annulation reaction of allenoates and 2-substituted 1,1-dicyanoalkenes.

2. Results and discussion

In our initial study, we tried various 2-substituted alkenes with two electron-withdrawing groups at the 1-position (1–4, Scheme 5) in order to enhance the reactivity of the alkenes. Unfortunately, none of the substrates gave satisfactory results. When the electron-withdrawing groups in 1–4 were changed from ester or ketone to nitrile at the same reaction conditions (10 mol % of Ph₃P as the nucleophilic catalyst, 1.5 equiv of K₂CO₃ as the base, refluxing in toluene for 3 h), we obtained the cycloadduct **7** from **5a** and **6a**⁵ with 83% isolated yield (Scheme 6).

Scheme 5. Various 2-substituted alkenes.

[3+2] cycloadduct

Scheme 6. Phosphine-catalyzed annulation reaction of allylic compounds with 2-substituted 1,1-dicyanoalkenes.

The ¹H NMR of the cycloadduct did not meet the anticipated structure 7a' (Scheme 6), but exhibited the structure 7a with reversed regioselectivity. Then compound 6a was used to react with allylic compounds with different leaving groups (5a-5d) and EtPh₂P was also used as the catalyst. In all cases, the reaction occurred yielding 7a as the only product with high yield and high regioselectivity (Table 1). To choose a milder and homogeneous reaction conditions, compound 5c was selected as the substrate, because it generated the yilide intermediate by the in situ formed base without the necessity of external additives. Using Bocsubstituted allylic compound 5c as the substrate and EtPh₂P as the catalyst, the reaction could occur at room temperature within 1 h with high yields. This was selected as the optimized condition.

Then, using allylic carbonate as the C3 component and $EtPh_2P$ as the catalyst, different 2-substituted 1,1-dicyanoalkenes were tried for this [3+2] annulation reaction as shown in Table 2. Both aromatic (Table 2, entries 1–6) and aliphatic

Table 1. Phosphine-catalyzed [3+2] annulation reaction of allylic compounds with benzylidenemalononitrile $(6a)^a$

Allylic substrate	R ₃ P	Temp (°C)	Time (h)	Yield ^b (%)
5a	Ph ₃ P	Reflux	3	83
5b	Ph ₃ P	Reflux	3	81
5c	Ph ₃ P	Reflux	3	84 ^c
5c	Ph ₃ P	rt	5	53 [°]
5c	EtPh ₂ P	rt	1	95°
5d	$EtPh_2P$	rt	1	90 [°]

^a Typical reaction conditions: under Ar, allylic substrates (0.60 mmol), **6a** (0.50 mmol), and K_2CO_3 (0.75 mmol) in toluene (2.5 mL), phosphine (0.05 mmol), stirred.

^b Isolated yield.

^c Without the addition of K₂CO₃.

Table 2. EtPh_2P-catalyzed [3+2] cycloaddition of allylic carbonate and 2-substituted 1,1-dicyanoalkenes $^{\rm a}$

Entry	R	Product	Yield ^b (%)
1	α-Naphthyl (6b)	7b	92
2	$4-MeO-C_{6}H_{4}-(6c)$	7c	96
3	$4-Cl-C_{6}H_{4}-(6d)$	7d	97
4	$4-NO_2-C_6H_4-(6e)$	7e	87
5	2,4-Dichlorophenyl (6f)	7f	95
6	2-Furyl (6g)	7g	94
7	^{<i>n</i>} Pr (6h)	7h	89
8	^{<i>i</i>} Pr (6i)	_	NR

^a Reaction conditions: under Ar, C3 component (0.60 mmol), C2 component (0.50 mmol), and EtPh₂P (0.05 mmol) in toluene (2.5 mL), stirred at room temperature for 1 h.

Isolated vield.

(Table 2, entry 7) substituents at the 2-position of 1,1dicyanoalkenes have no influence to this reaction. The products were afforded in comparable yields with high regioselectivity. When the 2-substituent was a bulky group such as ^{*i*}Pr (Table 2, entry 8), the reaction was completely suppressed.

Next, both different C2 and C3 components with substituents were examined to study the application scope of this reaction. As revealed in Table 3, in most cases, trans-isomers were obtained selectively in [3+2] annulation reaction. The stereochemistry was determined by the 2D-NOESY spectra of compounds **9a**, **9e**, and **9f** (Table 3, entries 1, 5, and 6). When R was *p*-nitrophenyl (or furyl) and R' was phenyl, two isomers **9e** and **9e**' (or **9f** and **9f**') were obtained (Table 3, entries 5 and 6).

Table 3. EtPh₂P-catalyzed [3+2] cycloaddition for different substrates^a

^a Reaction conditions: under argon, C3 component (0.60 mmol), C2 component (0.50 mmol), and EtPh₂P (0.05 mmol) in toluene (2.5 mL), stirred at room temperature for 1 h.

The mechanism and special regioselectivity of this reaction might be explained as shown in Scheme 7. As elucidated in our previous paper, the phosphonium salt A was formed via a $\hat{S}_N 2'$ mechanism from $R_3 P$ and the allylic substrate 8 first, followed by deprotonation by the in situ generated tert-butoxide anion affording an ylide B. Subsequent nucleophilic addition, of the γ -position of the ylide **B-1**, to 2-substituted 1,1-dicyanoalkenes (6) yielded intermediates C, followed by cyclization via intramolecular conjugate addition affording **D**. Finally, elimination of the phosphine completed the catalytic cycle to yield product 9. The trans stereochemistry of the two substituents in 9 is reasonable because of their neighboring position in a cyclopentene ring. Another pathway for addition of the α -position of the ylide B-2 to 6 was unfavorable due to the steric hindrance of the bulky phosphine group and the substituents at the 2-position of 6 as shown in Scheme 8. It is also reasonable that for electron-deficient alkenes without 2-substituents, products with regioselectivity like 7a' were formed (Scheme 6).^{3a,6}

Scheme 7. Proposed mechanism for the [3+2] cycloadditions of allylic carbonates and 2-substituted 1,1-dicyanoalkenes.

Scheme 8. Regioselectively favored reaction path.

In summary, we have developed a highly regio-selective phosphine-catalyzed [3+2] annulation reaction between allylic compounds and 2-substituted 1,1-dicyanoalkenes through a catalytic phosphorus ylide reaction. This reaction has the total reversed regioselectivity compared to that of the activated alkenes without the 2-substituents or that using the allenoates as the C3 components. Significantly, this reaction gave cyclopentenes in excellent yields with high stereoselectivity when the substituted C3 components were used. Further efforts on the asymmetric version of the reaction are in progress.

^b Isolated yield.

3. Experimental

3.1. General

NMR spectra were recorded on a Varian Mercury $V \times 300$ spectrometer. Infrared spectra were obtained on a Bio-Rad FTS-185 instrument. Mass spectra were provided on Agilent 5973 or Agilent 1100. Elemental analyses were carried out on Elementar Vario EL instruments. All solvents were dried and distilled before use according to the standard procedure. All melting points are uncorrected.

3.2. EtPh₂P-catalyzed annulation reaction of allylic compounds and 2-substituted 1,1-dicyanoalkenes

The allylic compounds $5a-5d^{3a,7,8}$ and 2-substituted 1,1'dicyanoalkenes (6)⁹ were prepared according to the literature methods.

3.2.1. General procedure for the EtPh₂P-catalyzed annulation reaction of allylic compounds and 2-substituted 1,1-dicyanoalkenes. Under argon, EtPh₂P (11 μ L, 0.05 mmol) was added by a syringe to a solution of **5** (0.6 mmol) and **6** (0.5 mmol) in toluene (2.5 mL). The reaction mixture was stirred at room temperature for 1 h. After the reaction was completed as monitored by TLC, the reaction mixture was concentrated and purified by column chromatography to obtain the product **7**.

3.2.1.1. 1-Ethoxycarbonyl-3,3-dicyano-4-phenylcyclopentene (7a). Oil; yield: 95%. ¹H NMR (300 MHz, CDCl₃) δ 7.49–7.45 (m, 5H), 6.64 (t, *J*=2.1 Hz, 1H), 4.33 (q, *J*=7.2 Hz, 2H), 4.19 (t, *J*=9.0 Hz, 1H), 3.33–3.15 (m, 2H), 1.38 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.3, 144.3, 133.7, 131.2, 129.4, 129.1, 128.0, 114.0, 111.3, 61.8, 55.7, 46.3, 35.1, 14.0. IR (oil): ν 2986, 2251, 1724, 1255 cm⁻¹. MS (*m*/*z*) 266 (M⁺), 238 (100), 221, 193, 166. Calcd for C₁₆H₁₄N₂O₂: C, 72.16; H, 5.30; N, 10.52. Found: C, 72.21; H, 5.39; N, 10.40.

3.2.1.2. 1-Ethoxycarbonyl-3,3-dicyano-4-(α-naphthyl)cyclopentene (7b). White solid; yield: 92%; mp 90 °C-91 °C. ¹H NMR (300 MHz, CDCl₃) δ 8.22 (d, J=8.7 Hz, 1H), 7.96–7.92 (m, 2H), 7.69–7.63 (m, 2H), 7.60–7.53 (m, 2H), 6.64 (t, J=2.1 Hz, 1H), 5.22 (t, J=8.1 Hz, 1H), 4.35 (q, J=7.2 Hz, 2H), 3.50–3.31 (m, 2H), 1.38 (t, J=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.4, 144.5, 134.0, 131.6, 131.2, 130.5, 130.0, 129.3, 127.2, 126.3, 125.7, 125.1, 122.2, 114.2, 111.6, 61.9, 48.8, 46.2, 37.3, 14.1. IR (neat): ν 2989, 2250, 1726, 1270 cm⁻¹. MS (m/z) 316 (M⁺), 288 (100), 243, 214. Calcd for C₂₀H₁₆N₂O₂: C, 75.93; H, 5.10; N, 8.86. Found: C, 75.83; H, 4.97; N, 8.86.

3.2.1.3. 1-Ethoxycarbonyl-3,3-dicyano-4-(*p***-methoxyphenyl)cyclopentene (7c). Oil; yield: 96%. ¹H NMR (300 MHz, CDCl₃) \delta 7.41–7.36 (m, 2H), 6.99–6.94 (m, 2H), 6.61 (dd, J_1=J_2=2.1 Hz, 1H), 4.31 (q, J=7.2 Hz, 2H), 4.15 (dd, J_1=J_2=9.0 Hz, 1H), 3.84 (s, 3H), 3.27–3.10 (m, 2H), 1.36 (t, J=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): \delta 162.3, 160.2, 144.4, 131.2, 129.2, 125.6, 114.4, 114.1, 111.5, 61.7, 55.4, 55.2, 46.5, 35.3, 14.0. IR (oil): \nu 3091, 2984, 2841, 2251, 2046, 1722, 1636, 1613, 1517,** 1184, 1108 cm⁻¹. MS (EI): m/z: 296 (M⁺), 268 (100), 251, 223, 208, 196, 180, 153, 121, 77. HRMS: Calcd for $C_{17}H_{16}N_2O_3$: 296.1161. Found: 296.1165.

3.2.1.4. 1-Ethoxycarbonyl-3,3-dicyano-4-(*p***-chlorophenyl)cyclopentene (7d). White solid; yield: 97%; mp 56 °C–57 °C. ¹H NMR (300 MHz, CDCl₃) \delta 7.47–7.39 (m, 4H), 6.63 (t,** *J***=1.8 Hz, 1H), 4.32 (q,** *J***=7.2 Hz, 2H), 4.17 (t,** *J***=8.7 Hz, 1H), 3.20 (dd,** *J***=9.0 Hz, 1.5 Hz, 2H), 1.37 (t,** *J***=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): \delta 162.2, 144.3, 135.6, 132.2, 131.1, 129.5, 129.4, 113.8, 111.2, 62.0, 55.2, 46.2, 35.3, 14.1. IR (neat): \nu 2989, 2250, 1724, 1497 cm⁻¹. MS (***m***/***z***) 300 (M⁺), 272 (100), 255, 192. Calcd for C₁₆H₁₃CIN₂O₂: C, 63.90; H, 4.36; N, 9.31. Found: C, 63.82; H, 4.43; N, 9.28.**

3.2.1.5. 1-Ethoxycarbonyl-3,3-dicyano-4-(*p***-nitrophenyl)cyclopentene (7e).** Oil; yield: 87%. ¹H NMR (300 MHz, CDCl₃) δ 8.34 (d, *J*=9.0 Hz, 2H), 7.67 (d, *J*=9.0 Hz, 2H), 6.66 (t, *J*=2.1 Hz, 1H), 4.33 (q, *J*=7.2 Hz, 2H), 4.29 (t, *J*=8.7 Hz, 1H), 3.28 (dd, *J*=8.7 Hz, 2.1 Hz, 2H), 1.37 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 161.9, 148.5, 144.2, 140.7, 130.9, 129.2, 124.4, 113.4, 110.9, 62.1, 54.9, 45.9, 35.2, 14.1. IR (oil): ν 3088, 2987, 2941, 2459, 2255, 1724, 1638, 1608, 1525, 1352 cm⁻¹. MS (EI): *m/z*: 311 (M⁺), 283, 266 (100), 236, 219, 208, 192, 164, 104, 84. HRMS: Calcd for C₁₆H₁₃N₃O₄: 311.0906. Found: 311.0905.

3.2.1.6. 1-Ethoxycarbonyl-3,3-dicyano-4-(2,4-dichlorophenyl)cyclopentene (**7f**). Oil; yield: 95%. ¹H NMR (300 MHz, CDCl₃) δ 7.54 (d, *J*=1.5 Hz, 1H), 7.40–7.33 (m, 2H), 6.58 (t, *J*=1.8 Hz, 1H), 4.87 (t, *J*=7.2 Hz, 1H), 4.32 (q, *J*=7.2 Hz, 2H), 3.35–3.09 (m, 2H), 1.36 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.0, 144.0, 135.8, 135.7, 131.3, 130.9, 130.0, 129.5, 127.8, 113.2, 111.3, 61.9, 49.1, 45.4, 36.7, 14.0. IR (oil): ν 2987, 2252, 1724, 1526, 1351 cm⁻¹. MS (*m*/*z*) 334 (M⁺), 306, 271 (100), 227, 89. HRMS: Calcd for C₁₆H₁₂N₂O₂Cl₂: 334.0276. Found: 334.0281.

3.2.1.7. 1-Ethoxycarbonyl-3,3-dicyano-4-(α-furyl)cyclopentene (**7g**). Oil; yield: 87%. ¹H NMR (300 MHz, CDCl₃) δ 7.50 (d, *J*=1.8 Hz, 1H), 6.59 (t, *J*=1.8 Hz, 1H), 6.47 (d, *J*=2.7 Hz, 1H), 6.44–6.42 (m, 1H), 4.34–4.25 (m, 3H), 3.20 (dd, *J*=9.0 Hz, 1.8 Hz, 2H), 1.35 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.0, 147.9, 143.8, 143.7, 130.8, 113.6, 110.8, 110.6, 109.5, 61.7, 49.0, 44.62, 34.0, 13.9. IR (oil): ν 2987, 2252, 1725, 1263 cm⁻¹. MS (*m/z*) 256 (M⁺), 228 (100), 211, 199. HRMSEI: Calcd for C₁₄H₁₃N₂O₃ (M⁺+1): 257.0921. Found: 257.0908.

3.2.1.8. 1-Ethoxycarbonyl-3,3-dicyano-4*n***-propylcy-clopentene** (**7h**). Oil; yield: 89%. ¹H NMR (300 MHz, CDCl₃) δ 6.55 (t, *J*=2.1 Hz, 1H), 4.27 (q, *J*=7.2 Hz, 2H), 3.02–2.91 (m, 2H), 2.51–2.48 (m, 1H), 1.91–1.75 (m, 2H), 1.58–1.49 (m, 2H), 1.33 (t, *J*=7.2 Hz, 3H), 1.04 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.4, 144.3, 131.6, 114.4, 111.4, 61.7, 50.5, 43.6, 36.2, 33.3, 21.0, 14.1, 13.8. IR (oil): ν 3098, 2965, 2935, 2877, 2251, 1726, 1639, 1467, 1374, 1262 cm⁻¹. MS (EI): *m/z*: 233 (M⁺+1), 206, 175, 131, 103, 56 (100). HRMS: Calcd for C₁₃H₁₆N₂O₂: 232.1212. Found: 232.1216.

3.3. EtPh₂P-catalyzed annulation reaction of substituted allylic compounds (8) and 2-substituted 1,1-dicyano-alkenes

3.3.1. Preparation of substituted allylic compounds (8). First, the substituted allylic alcohols (8a'-8e') were prepared from the Baylis–Hillman reaction of ethyl acrylate and substituted aldehydes.^{8,10} Then, the allylic alcohols were reacted with Boc₂O using the following procedure to obtain **8a–8e**.

3.3.1.1. Typical procedure for the preparation of (8a). To an ice-water cooled solution of **8a'** (10 mmol) in dry CH_2Cl_2 (20 mL) were added Boc_2O (11 mmol) and DMAP (0.5 mmol) in dry CH_2Cl_2 (20 mL) over half an hour. The reaction mixture was stirred at room temperature overnight. The solution was washed with aqueous hydrochloric acid (15%, 20 mL), saturated sodium bicarbonate (20 mL), and brine (20 mL) sequentially, dried over anhydrous sodium sulfate, concentrated, and purified by column chromatography to get the product **8a**.

3.3.1.1.1. 1-n-Propyl-2-ethoxycarbonylallyl tert-butylcarbonate (8a). Oil; yield: 42%. ¹H NMR (300 MHz, CDCl₃) δ 6.30 (s, 1H), 5.82 (t, *J*=1.2 Hz, 1H), 5.47–5.43 (m, 1H), 4.24 (dq, *J*=1.8 Hz, 7.2 Hz, 2H), 1.74–1.61 (m, 2H), 1.48 (s, 9H), 1.47–1.35 (m, 2H), 1.31 (t, *J*=7.2 Hz, 3H), 0.93 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 165.1, 152.6, 140.5, 124.3, 82.0, 74.1, 60.7, 36.6, 27.6, 18.5, 14.0, 13.6. IR (oil): ν 2982, 1811, 1747, 1634 cm⁻¹. MS (*m*/*z*) 216 (M⁺-C₄H₈), 171, 154, 57 (100). Calcd for C₁₄H₂₄O₅: C, 61.74; H, 8.88. Found: C, 61.55; H, 8.98.

3.3.1.1.2. 1-i-Propyl-2-ethoxycarbonylallyl tert-butylcarbonate (**8b**). Oil; yield: 52%. ¹H NMR (300 MHz, CDCl₃) δ 6.34 (d, J=1.2 Hz, 1H), 5.79 (t, J=1.2 Hz, 1H), 5.30 (dd, J=0.9 Hz, 5.4 Hz, 1H), 5.29–4.18 (m, 2H), 2.06– 2.00 (m, 1H), 1.47 (s, 9H), 1.31 (t, J=7.2 Hz, 3H), 0.95 (d, J=6.3 Hz, 3H), 0.92 (d, J=6.3 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 165.4, 153.0, 139.7, 125.4, 82.0, 78.6, 60.8, 31.7, 27.7, 18.7, 17.0, 14.1. IR (oil): ν 2978, 1748, 1720, 1633 cm⁻¹. MS (*m*/*z*) 217 (M⁺+1-C₄H₈), 155, 109, 57 (100). HRMS: Calcd for C₁₄H₂₄O₅ (M⁺-C₄H₈): 216.0998. Found: 216.1000.

3.3.1.1.3. 1-n-Butyl-2-ethoxycarbonylallyl tert-butylcarbonate (8c). Oil; yield: 66%. ¹H NMR (300 MHz, CDCl₃) δ 6.28 (s, 1H), 5.82 (s, 1H), 5.50 (dd, *J*=3.6 Hz, 9.6 Hz, 1H), 4.28–4.19 (m, 2H), 1.74–1.61 (m, 3H), 1.48 (s, 9H), 1.31 (t, *J*=7.2 Hz, 3H), 0.97 (d, *J*=6.9 Hz, 3H), 0.93 (d, *J*=6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 165.0, 152.6, 141.1, 124.0, 82.0, 72.9, 60.7, 43.9, 27.6, 24.7, 23.0, 21.4, 14.0. IR (oil): ν 2962, 1812, 1747, 1719, 1631 cm⁻¹. MS (*m*/*z*) 287 (M⁺+1), 231, 169 (100), 153. HRMS: Calcd for C₁₅H₂₆O₅Na⁺ (M⁺+Na): 309.1673. Found: 309.1674.

3.3.1.1.4. 1-α-Furyl-2-ethoxycarbonylallyl tert-butylcarbonate (**8d**). White solid; yield: 88%; mp 50 °C–51 °C;. ¹H NMR (300 MHz, CDCl₃) δ 7.40 (t, *J*=1.2 Hz, 1H), 6.56 (s, 1H), 6.49 (s, 1H), 6.34–6.32 (m, 2H), 6.04 (s, 1H), 4.23–4.15 (m, 2H), 1.48 (s, 9H), 1.24 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 164.6, 150.1, 143.2, 137.1, 126.4, 110.4, 109.9, 82.9, 68.8, 61.0, 27.7, 14.0. IR (neat): ν 3157, 2989, 1748, 1711, 1637 cm⁻¹. MS (*m*/*z*) 240 (M⁺–C₄H₈), 194, 179, 122, 57 (100). Calcd for C₁₅H₂₀O₆: C, 60.80; H, 6.80. Found: C, 60.81; H, 6.79.

3.3.1.1.5. Preparation of 1-(p-nitrophenyl)-2-ethoxycarbonvlallvl tert-butvlcarbonate (8e). Compound 8e' (20 mmol) and Boc₂O (21 mmol) were dissolved in dry benzene (50 mL) and DMAP (0.1 mmol) was added. The reaction mixture was refluxed for 1 h under N₂. It was cooled, concentrated, and purified by column chromatography to get the product 8e. Oil; yield: 60%. ¹H NMR (300 MHz, CDCl₃) & 8.22-8.20 (m, 2H), 7.62-7.59 (m, 2H), 6.53 (s, 1H), 6.47 (s, 1H), 6.01 (d, J=0.9 Hz, 1H), 4.17 (qd, J=1.2 Hz, 7.2 Hz, 2H), 1.47 (s, 9H), 1.25 (t, J=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 164.2, 151.9, 147.6, 144.9, 138.6, 128.3, 126.4, 123.5, 83.1, 74.5, 61.1, 27.5, 13.9. IR (oil): v 3116, 2984, 2939, 1750, 1728, 1635, 1609 cm^{-1} . MS (EI): m/z: 295 (M⁺-C₄H₈), 249, 205, 150, 115, 57 (100). HRMS: Calcd for C₁₃H₁₃NO₇ (M⁺-C₄H₈): 295.0692. Found: 295.0692.

3.3.2. General procedure for the EtPh₂P-catalyzed annulation of substituted allylic compounds (8) and 2substituted 1,1-dicyanoalkenes (6). The procedure was similar to that of the unsubstituted allylic compounds.

3.3.2.1. (*trans*)-1-Ethoxycarbonyl-3,3-dicyano-4phenyl-5-*n*-propylcyclopentene (9a). Oil; ¹H NMR (300 MHz, CDCl₃) δ 7.47–7.39 (m, 5H), 6.56 (d, *J*=1.8 Hz, 1H), 4.37–4.29 (m, 2H), 3.83 (d, *J*=7.5 Hz, 1H), 3.63–3.60 (m, 1H), 1.84–1.67 (m, 2H), 1.38 (t, *J*=7.2 Hz, 3H), 1.28–1.18 (m, 2H), 0.85 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.6, 147.5, 134.8, 130.2, 129.4, 129.3, 128.3, 114.4, 111.7, 61.7, 60.3, 48.7, 45.6, 33.5, 19.6, 14.1, 14.0 IR (oil): ν 2963, 2935, 2875, 2250, 1725 cm⁻¹. MS (*m*/*z*) 279 (M⁺–C₂H₅), 234, 193, 91 (100). HRMSEI: Calcd for C₁₉H₂₀N₂O₂: 308.1525. Found: 308.1511. The stereochemistry was further determined by NOESY spectra (see Supplementary data).

3.3.2.2. (*trans*)-1-Ethoxycarbonyl-3,3-dicyano-4phenyl-5-*i*-propylcyclopentene (9b). White solid; mp 87 °C–89 °C. ¹H NMR (300 MHz, CDCl₃): δ 7.47–7.37 (m, 5H), 6.51 (d, *J*=1.8 Hz, 1H), 4.32 (q, *J*=7.2 Hz, 2H), 3.90 (d, *J*=6.9 Hz, 1H), 3.68–3.63 (m, 1H), 2.57–2.46 (m, 1H), 1.37 (t, *J*=7.2 Hz, 3H), 0.90 (d, *J*=6.9 Hz, 3H), 0.74 (d, *J*=6.9 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.7, 147.2, 136.5, 130.0, 129.13, 129.09, 128.2, 114.3, 111.8, 61.6, 55.5, 55.3, 46.1, 28.3, 20.6, 17.2, 14.0. IR (neat): ν 3101, 2962, 2257, 1725, 1632, 1602 cm⁻¹. MS (EI): *m/z*: 308 (M⁺), 253, 193, 105, 43 (100). HRMS: Calcd for C₁₉H₂₀N₂O₂: 308.1525. Found: 308.1531.

3.3.2.3. (*trans*)-1-Ethoxycarbonyl-3,3-dicyano-4-(*p*-methoxyphenyl)-5-*n*-propylcyclopentene (9c). Oil. ¹H NMR (300 MHz, CDCl₃) δ 7.33 (dd, *J*=2.1 Hz, 6.6 Hz,

2H), 6.95 (dd, J=2.1 Hz, 6.6 Hz, 2H), 6.53 (d, J=2.1 Hz, 1H), 4.35–4.27 (m, 2H), 3.83 (s, 3H), 3.78 (d, J=7.5 Hz, 1H), 3.55–3.53 (m, 1H), 1.81–1.63 (m, 2H), 1.36 (t, J=7.2 Hz, 3H), 1.28–1.16 (m, 2H), 0.84 (t, J=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.6, 160.1, 147.4, 130.2, 129.5, 126.5, 114.4, 114.4, 111.8, 61.6, 59.8, 55.2, 48.6, 45.6, 33.3, 19.5, 14.0. IR (oil): ν 2963, 2936, 2249, 1724, 1516, 1257 cm⁻¹. MS (m/z) 339 (M⁺+1), 338, 309, 295, 121, 43 (100). HRMSEI: Calcd for C₂₀H₂₃N₂O₃ (M⁺+1): 339.1703. Found: 339.1709.

3.3.2.4. (*trans*)-1-Ethoxycarbonyl-3,3-dicyano-4phenyl-5-*i*-butylcyclopentene (9d). Oil. ¹H NMR (300 MHz, CDCl₃) δ 7.46–7.35 (m, 5H), 6.52 (d, *J*= 1.8 Hz, 1H), 4.32 (qd, *J*=2.1 Hz, 7.2 Hz, 2H), 3.81 (d, *J*= 6.0 Hz, 1H), 3.60–3.53 (m, 1H), 1.83–1.76 (m, 1H), 1.56– 1.44 (m, 2H), 1.38 (t, *J*=7.2 Hz, 3H), 0.86 (d, *J*=6.6 Hz, 3H), 0.74 (d, *J*=6.6 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 162.5, 148.5, 135.8, 129.7, 129.4, 129.2, 128.1, 114.5, 111.8, 61.7, 61.1, 48.3, 45.8, 42.5, 25.8, 23.4, 21.4, 14.1. IR (oil): ν 3091, 2961, 2250, 1725, 1638, 1371 cm⁻¹. MS (EI): *m/z*: 322 (M⁺), 293, 234, 193, 166, 84 (100). HRMS: Calcd for C₂₀H₂₂N₂O₂: 322.1681. Found: 322.1684.

3.3.2.5. (*trans*)-1-Ethoxycarbonyl-3,3-dicyano-4phenyl-5-(*p*-nitrophenyl)cyclopentene (9e). Oil; ¹H NMR (300 MHz, CDCl₃) δ 8.18–8.13 (m, 2H), 7.45 (s, 5H), 7.31–7.27 (m, 2H), 6.89 (d, *J*=2.1 Hz, 1H), 4.82 (dd, *J*=9.6 Hz, 2.1 Hz, 1H), 4.22–4.10 (m, 2H), 3.96 (d, *J*= 9.6 Hz, 1H), 1.17 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 161.5, 147.4, 145.8, 145.4, 132.7, 131.2, 130.0, 129.4, 128.5, 128.2, 124.1, 113.3, 111.1, 64.2, 61.9, 53.4, 45.6, 13.8. IR (oil): ν 3083, 2985, 2251, 1726, 1682 cm⁻¹. MS (EI): *m/z*: 387 (M⁺), 359, 288 (100), 268, 191. HRMS: Calcd for C₂₂H₁₇N₃O₄: 387.1219. Found: 387.1218. The stereochemistry was further determined by NOESY spectra (see Supplementary data).

3.3.2.6. (*cis*)-1-Ethoxycarbonyl-3,3-dicyano-4-phenyl-**5**-(*p*-nitrophenyl)cyclopentene (9e'). Oil. ¹H NMR (300 MHz, CDCl₃): δ 8.38–8.35 (m, 2H), 7.78–7.74 (m, 2H), 7.64–7.61 (m, 2H), 7.50–7.47 (m, 3H), 6.59 (d, *J*= 2.4 Hz, 1H), 4.65 (d, *J*=9.6 Hz, 1H), 4.38 (dd, *J*=2.4 Hz, 9.6 Hz, 1H), 4.21 (q, *J*=7.2 Hz, 2H), 1.26 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 169.0, 148.6, 139.9, 138.4, 130.6, 130.3, 129.8, 129.3, 126.4, 124.4, 113.8, 112.3, 62.5, 57.5, 52.9, 47.5, 14.1. IR (oil): ν 3114, 3085, 2985, 2249, 1737, 1684 cm⁻¹. MS (EI): *m/z*: 387 (M⁺), 386, 314, 288 (100), 268, 191. HRMS: Calcd for C₂₂H₁₇N₃O₄: 387.1219. Found: 387.1220. The stereochemistry was further determined by NOESY spectra (see Supplementary data).

3.3.2.7. (*trans*)-1-Ethoxycarbonyl-3,3-dicyano-4phenyl-5-(α -furyl)cyclopentene (9f). Oil. ¹H NMR (300 MHz, CDCl₃) δ 7.45 (s, 5H), 7.33 (d, *J*=1.2 Hz, 1H), 6.76 (d, *J*=2.1 Hz, 1H), 6.28 (dd, *J*=2.4 Hz, 3.6 Hz, 1H), 6.17 (d, *J*=2.7 Hz, 1H), 4.81 (dd, *J*=9.0 Hz, 2.4 Hz, 1H), 4.29–4.12 (m, 3H), 1.26 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 161.7, 149.8, 144.5, 142.4, 132.7, 131.4, 129.5, 129.2, 128.2, 113.5, 111.3, 110.6, 108.1, 61.6, 60.5, 47.3, 45.0, 13.8. IR (oil): ν 2986, 2251, 1727, 1242 cm⁻¹. MS (m/z) 333 (M⁺+1), 332, 89, 43 (100). HRMSEI: Calcd for C₂₀H₁₆N₂O₃Na⁺ (M⁺+Na): 355.1053. Found: 355.1060. The stereochemistry was further determined by NOESY spectra (see Supplementary data).

3.3.2.8. (*cis*)-1-Ethoxycarbonyl-3,3-dicyano-4-phenyl-**5**-(α -furyl)cyclopentene (9f'). Oil. ¹H NMR (300 MHz, CDCl₃) δ 7.64–7.61 (m, 2H), 7.54 (d, *J*=1.8 Hz, 1H), 7.48–7.43 (m, 3H), 6.58 (d, *J*=3.0 Hz, 1H), 6.51 (d, *J*= 2.4 Hz, 1H), 6.46 (dd, *J*=2.1 Hz, 3.3 Hz, 1H), 4.70 (d, *J*=9.0 Hz, 1H), 4.36 (dd, *J*=2.4 Hz, 9.6 Hz, 1H), 4.25 (q, *J*= 6.9 Hz, 2H), 1.30 (t, *J*=7.2 Hz, 3H). ¹³C NMR (75 MHz, CDCl₃): δ 161.7, 149.8, 144.5, 142.4, 132.7, 131.4, 129.5, 129.2, 128.2, 113.5, 111.3, 110.6, 108.1, 61.6, 60.5, 47.3, 45.0, 13.8. IR (oil): ν 2986, 2251, 1727, 1242 cm⁻¹. MS (*m*/*z*) 333 (M⁺+1), 332, 89, 43 (100). HRMSEI: Calcd for C₂₀H₁₆N₂O₃Na⁺ (M⁺+Na): 355.1053. Found: 355.1057. The stereochemistry was further determined by NOESY spectra (see Supplementary data).

Acknowledgements

We thank the National Natural Sciences Foundation of China (20572121) and Chinese Academy of Sciences for financial support.

Supplementary data

Experimental procedure, characterization data, copies of ¹H and ¹³C NMR spectra for new compounds, and NOESY spectra of compounds **9a**, **9e**, **9e'**, **9f**, and **9f'** are provided. Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2007. 02.115.

References and notes

- For reviews on phosphine-catalyzed reactions, see: (a) Methot, J. L.; Roush, W. R. Adv. Synth. Catal. 2004, 346, 1035; (b) Lu, X.; Zhang, C.; Xu, Z. Acc. Chem. Res. 2001, 34, 535.
- 2. For recent reports on phosphine-catalyzed reactions, see: (a) Wilson, J. E.; Fu, G. C. Angew. Chem., Int. Ed. 2006, 45, 1426; (b) Zhao, G.-L.; Shi, M. Org. Biomol. Chem. 2005, 3, 3686; (c) Zhu, X.-F.; Henry, C. E.; Wang, J.; Dudding, T.; Kwon, O. Org. Lett. 2005, 7, 1387; (d) Yavari, I.; Souri, S.; Sirouspour, M.; Djahaniani, H.; Nasiri, F. Synthesis 2005, 1761; (e) Hanédanian, M.; Loreau, O.; Sawicki, M.; Taran, F. Tetrahedron 2005, 61, 2287; (f) Zhu, X.-F.; Henry, C. E.; Kwon, O. Tetrahedron 2005, 61, 6276; (g) Yong, S. R.; Williams, M. C.; Pyne, S. G.; Ung, A. T.; Skelton, B. W.; White, A. H.; Turner, P. Tetrahedron 2005, 61, 8120; (h) Virieux, D.; Guillouzic, A.-F.; Cristau, H.-J. Tetrahedron 2006, 62, 3710; (i) Hanédanian, M.; Loreau, O.; Taran, F.; Mioskowski, C. Tetrahedron Lett. 2004, 45, 7035; (j) Jean, L.; Marinetti, A. Tetrahedron Lett. 2006, 47, 2141.
- (a) Du, Y.; Lu, X.; Zhang, C. Angew. Chem., Int. Ed. 2003, 42, 1035; (b) Du, Y.; Feng, J.; Lu, X. Org. Lett. 2005, 7, 1987.
- 4. Lu, Z.; Lu, X.; Zhang, X. Tetrahedron 2006, 62, 457.
- 5. For the use of **5a** as the electrophilic olefin in [3+2] annulation reactions, see: Boivin, J.; Tailhan, C.; Zard, S. Z. *J. Am. Chem. Soc.* **1991**, *113*, 5874.

- For some stoichiometric examples of the change in the addition of γ-position of the ylide to the α-position, see: (a) Dauben, W. G.; Hart, D. J.; Ipaktschi, J.; Kozikowski, A. P. *Tetrahedron Lett.* **1973**, 4425; (b) Dauben, W. G.; Kozikowski, A. P. *Tetrahedron Lett.* **1973**, 3711.
- 7. Villieras, J.; Rambaud, M. Synthesis 1982, 11, 924.
- 8. Roy, O.; Riahi, A.; Hènin, F.; Muzart, J. *Tetrahedron* **2000**, *56*, 8133.
- 9. Oh, H.; Yang, J. H.; Lee, H. W.; Lee, I. J. Org. Chem. 2000, 65, 2188.
- Aggarwal, V. K.; Dean, D. K.; Mereu, A.; Williams, R. J. Org. Chem. 2002, 67, 510.